Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1381634.v1

ABSTRACT

Background: Establishing the optimal treatment for COVID-19 patients remains challenging. Specifically, immunocompromised and pre-diseased patients are at high risk for severe disease course and face limited therapeutic options. Convalescent plasma has been considered as therapeutic approach, but reliable data are lacking, especially for high-risk patients. Methods: We performed a retrospective analysis of 55 hospitalized COVID-19 patients with high risk for disease progression, primarily due to immunosuppression from cancer, solid organ transplantation, autoimmune disease, dialysis. A matched-pairs analysis (1:4) was performed with 220 patients from the Lean European Open Survey on SARS-CoV-2-infected Patients (LEOSS) who were treated or not treated with convalescent plasma. Results: Both cohorts, had high mortality (UKD 41.8%, LEOSS 34.1%). A matched-pairs analysis showed no significant effect on mortality. CP administration before the formation of pulmonary infiltrates showed the lowest mortality in both cohorts (10%), whereas mortality in the complicated phase was 27.8%. CP administration during the critical phase revealed the highest mortality; UKD 60.9%, LEOSS 48.3%. Conclusion: In our cohort of SARS-CoV-2 infected patients with severe comorbidities CP did not significantly reduce mortality in a retrospective matched pairs analysis. However, our data supports the concept that a reduction in mortality is achievable when CP is administered early.


Subject(s)
COVID-19 , Autoimmune Diseases , Neoplasms , Cerebral Palsy
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1249111.v1

ABSTRACT

The German government initiated the Network University Medicine (NUM) in early 2020 to improve national research activities on the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. To this end, 36 German Academic Medical Centers started to collaborate on 13 projects, with the largest being the National Pandemic Cohort Network (NAPKON). The NAPKON’s goal is creating the most comprehensive Coronavirus Disease 2019 (COVID-19) cohort in Germany. Within NAPKON, adult and pediatric patients are observed in three complementary cohort platforms (Cross-Sectoral, High-Resolution and Population-Based) from the initial infection until up to three years of follow-up. Study procedures comprise comprehensive clinical and imaging diagnostics, quality-of-life assessment, patient-reported outcomes and biosampling. The three cohort platforms build on four infrastructure core units (Interaction, Biosampling, Epidemiology, and Integration) and collaborations with NUM projects. Key components of the data capture, regulatory, and data privacy are based on the German Centre for Cardiovascular Research. By December 01, 2021, 34 university and 34 non-university hospitals have enrolled 4,241 patients with local data quality reviews performed on 2,812 (66%). 47% were female, the median age was 53 (IQR: 38-63)) and 3 pediatric cases were included. 30% of patients were hospitalized, 11% admitted to an intensive care unit, and 4% of patients deceased while enrolled. 7,143 visits with biosampling in 3,595 patients were conducted by November 29, 2021. In this overview article, we summarize NAPKON’s design, relevant milestones including first study population characteristics, and outline the potential of NAPKON for German and international research activities.Trial registration:· https://clinicaltrials.gov/ct2/show/NCT04768998· https://clinicaltrials.gov/ct2/show/NCT04747366· https://clinicaltrials.gov/ct2/show/NCT04679584


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.11.21266048

ABSTRACT

Despite available vaccinations COVID-19 case numbers around the world are still growing, and effective medications against severe cases are lacking. In this work, we developed a machine learning model which predicts mortality for COVID-19 patients using data from the multi-center Lean European Open Survey on SARS-CoV-2-infected patients (LEOSS) observational study (>100 active sites in Europe, primarily in Germany), resulting into an AUC of almost 80%. We showed that molecular mechanisms related to dementia, one of the relevant predictors in our model, intersect with those associated to COVID-19. Most notably, among these molecules was tyrosine kinase 2 (TYK2), a protein that has been patented as drug target in Alzheimers Disease but also genetically associated with severe COVID-19 outcomes. We experimentally verified that anti-cancer drugs Sorafenib and Regorafenib showed a clear anti-cytopathic effect in Caco2 and VERO-E6 cells and can thus be regarded as potential treatments against COVID-19. Altogether, our work demonstrates that interpretation of machine learning based risk models can point towards drug targets and new treatment options, which are strongly needed for COVID-19.


Subject(s)
Dementia , Alzheimer Disease , Severe Acute Respiratory Syndrome , COVID-19
5.
Frauke Degenhardt; David Ellinghaus; Simonas Juzenas; Jon Lerga-Jaso; Mareike Wendorff; Douglas Maya-Miles; Florian Uellendahl-Werth; Hesham ElAbd; Malte C. Ruehlemann; Jatin Arora; Onur oezer; Ole Bernt Lenning; Ronny Myhre; May Sissel Vadla; Eike Matthias Wacker; Lars Wienbrandt; Aaron Blandino Ortiz; Adolfo de Salazar; Adolfo Garrido Chercoles; Adriana Palom; Agustin Ruiz; Alberto Mantovani; Alberto Zanella; Aleksander Rygh Holten; Alena Mayer; Alessandra Bandera; Alessandro Cherubini; Alessandro Protti; Alessio Aghemo; Alessio Gerussi; Alexander Popov; Alfredo Ramirez; Alice Braun; Almut Nebel; Ana Barreira; Ana Lleo; Ana Teles; Anders Benjamin Kildal; Andrea Biondi; Andrea Ganna; Andrea Gori; Andreas Glueck; Andreas Lind; Anke Hinney; Anna Carreras Nolla; Anna Ludovica Fracanzani; Annalisa Cavallero; Anne Ma Dyrhol-Riise; Antonella Ruello; Antonio Julia; Antonio Muscatello; Antonio Pesenti; Antonio Voza; Ariadna Rando-Segura; Aurora Solier; Beatriz Cortes; Beatriz Mateos; Beatriz Nafria-Jimenez; Benedikt Schaefer; Bjoern Jensen; Carla Bellinghausen; Carlo Maj; Carlos Ferrando; Carmen de la Horrra; Carmen Quereda; Carsten Skurk; Charlotte Thibeault; Chiara Scollo; Christian Herr; Christoph D. Spinner; Christoph Lange; Cinzia Hu; Clara Lehmann; Claudio Cappadona; Clinton Azuure; - COVICAT study group; - Covid-19 Aachen Study (COVAS); Cristiana Bianco; Cristina Sancho; Dag Arne Lihaug Hoff; Daniela Galimberti; Daniele Prati; David Haschka; David Jimenez; David Pestana; David Toapanta; Elena Azzolini; Elio Scarpini; Elisa T. Helbig; Eloisa Urrechaga; Elvezia Maria Paraboschi; Emanuele Pontali; Enric Reverter; Enrique J. Calderon; Enrique Navas; Erik Solligard; Ernesto Contro; Eunate Arana; Federico Garcia; Felix Garcia Sanchez; Ferruccio Ceriotti; Filippo Martinelli-Boneschi; Flora Peyvandi; Florian Kurth; Francesco Blasi; Francesco Malvestiti; Francisco J. Medrano; Francisco Mesonero; Francisco Rodriguez-Frias; Frank Hanses; Fredrik Mueller; Giacomo Bellani; Giacomo Grasselli; Gianni Pezzoli; Giorgio Costantino; Giovanni Albano; Giuseppe Bellelli; Giuseppe Citerio; Giuseppe Foti; Giuseppe Lamorte; Holger Neb; Ilaria My; Ingo Kurth; Isabel Hernandez; Isabell Pink; Itziar de Rojas; Ivan Galvan-Femenia; Jan C. Holter; Jan Egil Egil Afset; Jan Heyckendorf; Jan Damas; Jan Kristian Rybniker; Janine Altmueller; Javier Ampuero; Jesus M. Banales; Joan Ramon Badia; Joaquin Dopazo; Jochen Schneider; Jonas Bergan; Jordi Barretina; Joern Walter; Jose Hernandez Quero; Josune Goikoetxea; Juan Delgado; Juan M. Guerrero; Julia Fazaal; Julia Kraft; Julia Schroeder; Kari Risnes; Karina Banasik; Karl Erik Mueller; Karoline I. Gaede; Koldo Garcia-Etxebarria; Kristian Tonby; Lars Heggelund; Laura Izquierdo-Sanchez; Laura Rachele Bettini; Lauro Sumoy; Leif Erik Sander; Lena J. Lippert; Leonardo Terranova; Lindokuhle Nkambule; Lisa Knopp; Lise Tuset Gustad; Lucia Garbarino; Luigi Santoro; Luis Tellez; Luisa Roade; Mahnoosh Ostadreza; Maider Intxausti; Manolis Kogevinas; Mar Riveiro-Barciela; Marc M. Berger; Mari E.K. Niemi; Maria A. Gutierrez-Stampa; Maria Grazia Valsecchi; Maria Hernandez-Tejero; Maria J.G.T. Vehreschild; Maria Manunta; Mariella D'Angio; Marina Cazzaniga; Marit M. Grimsrud; Markus Cornberg; Markus M. Noethen; Marta Marquie; Massimo Castoldi; Mattia Cordioli; Maurizio Cecconi; Mauro D'Amato; Max Augustin; Melissa Tomasi; Merce Boada; Michael Dreher; Michael J. Seilmaier; Michael Joannidis; Michael Wittig; Michela Mazzocco; Miguel Rodriguez-Gandia; Natale Imaz Ayo; Natalia Blay; Natalia Chueca; Nicola Montano; Nicole Ludwig; Nikolaus Marx; Nilda Martinez; - Norwegian SARS-CoV-2 Study group; Oliver A. Cornely; Oliver Witzke; Orazio Palmieri; - Pa COVID-19 Study Group; Paola Faverio; Paolo Bonfanti; Paolo Tentorio; Pedro Castro; Pedro M. Rodrigues; Pedro Pablo Espana; Per Hoffmann; Philip Rosenstiel; Philipp Schommers; Phillip Suwalski; Raul de Pablo; Ricard Ferrer; Robert Bals; Roberta Gualtierotti; Rocio Gallego-Duran; Rosa Nieto; Rossana Carpani; Ruben Morilla; Salvatore Badalamenti; Sammra Haider; Sandra Ciesek; Sandra May; Sara Bombace; Sara Marsal; Sara Pigazzini; Sebastian Klein; Selina Rolker; Serena Pelusi; Sibylle Wilfling; Silvano Bosari; Soren Brunak; Soumya Raychaudhuri; Stefan Schreiber; Stefanie Heilmann-Heimbach; Stefano Aliberti; Stephan Ripke; Susanne Dudman; - The Humanitas COVID-19 Task Forse; - The Humanitas Gavazzeni COVID-19 Task Force; Thomas Bahmer; Thomas Eggermann; Thomas Illig; Thorsten Brenner; Torsten Feldt; Trine Folseraas; Trinidad Gonzalez Cejudo; Ulf Landmesser; Ulrike Protzer; Ute Hehr; Valeria Rimoldi; Vegard Skogen; Verena Keitel; Verena Kopfnagel; Vicente Friaza; Victor Andrade; Victor Moreno; Wolfgang Poller; Xavier Farre; Xiaomin Wang; Yascha Khodamoradi; Zehra Karadeniz; Anna Latiano; Siegfried Goerg; Petra Bacher; Philipp Koehler; Florian Tran; Heinz Zoller; Eva C. Schulte; Bettina Heidecker; Kerstin U. Ludwig; Javier Fernandez; Manuel Romero-Gomez; Agustin Albillos; Pietro Invernizzi; Maria Buti; Stefano Duga; Luis Bujanda; Johannes R. Hov; Tobias L. Lenz; Rosanna Asselta; Rafael de Cid; Luca Valenti; Tom H. Karlsen; Mario Caceres; Andre Franke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260624

ABSTRACT

Due to the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), deepening the host genetic contribution to severe COVID-19 may further improve our understanding about underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany, as well as hypothesis-driven targeted analysis of the human leukocyte antigen (HLA) region and chromosome Y haplotypes. We include detailed stratified analyses based on age, sex and disease severity. In addition to already established risk loci, our data identify and replicate two genome-wide significant loci at 17q21.31 and 19q13.33 associated with severe COVID-19 with respiratory failure. These associations implicate a highly pleiotropic ~0.9-Mb 17q21.31 inversion polymorphism, which affects lung function and immune and blood cell counts, and the NAPSA gene, involved in lung surfactant protein production, in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Respiratory Insufficiency
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.07.20245241

ABSTRACT

Most COVID-19 patients experience a mild disease; a minority suffers from critical disease. We report about a biomarker validation study regarding 296 patients with confirmed SARS-CoV-2 infections from four tertiary care referral centers in Germany and France. Patients with critical disease had significantly less anti-HCoV OC43 nucleocapsid protein antibodies compared to other COVID-19 patients (p=0.007). In multivariate analysis, OC43 negative inpatients had an increased risk of critical disease, higher than the risk by increased age or BMI, and lower than the risk by male sex. A risk stratification based on sex and OC43 serostatus was derived from this analysis. Our results indicate that prior infections with seasonal human coronaviruses can protect against a severe course of COVID-19. Anti-OC43 antibodies should be measured for COVID-19 inpatients and considered as part of the risk assessment. We expect individuals tested negative for anti-OC43 antibodies to particularly benefit from vaccination, especially with other risk factors prevailing.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.21.20198671

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to severe pneumonia and hyperinflammation. So far, insufficient or excessive T cell responses were described in patients. We applied novel approaches to analyze T cell reactivity and showed that T anergy is already present in non-ventilated COVID-19 patients, very pronounced in ventilated patients, strongly associated with virus persistence and reversible with clinical recovery. T cell activation was measured by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood and proved to be much more meaningful than classical readouts with PBMCs. Monocytes responded stronger in males than females and IL-2 partially reversed T cell anergy. Downstream markers of T cell anergy were also found in fresh blood samples of critically ill patients with severe T cell anergy. Based on our data we were able to develop a score to predict fatal outcomes and to identify patients that may benefit from strategies to overcome T cell anergy.


Subject(s)
Pneumonia , Critical Illness , Addison Disease , COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.18.20194175

ABSTRACT

Coronavirus disease 2019 (COVID-19) is driven by dysregulated immune responses yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 47 patients with confirmed SARS-CoV-2 infection and 16 uninfected controls, we found an immunometabolic dysregulation specific for patients with progressed disease that was reversible in the recovery phase. Specifically, T cells and monocytes exhibited increased mitochondrial mass, accumulated intracellular ROS and these changes were accompanied by disrupted mitochondrial architecture. Basigin (CD147), but not established markers of T cell activation, was up-regulated on T cells from progressed COVID-19 patients and correlated with ROS accumulation, reflected in the transcriptome. During recovery, basigin and ROS decreased to match the uninfected controls. In vitro analyses confirmed the correlation and showed a down-regulation of ROS by dexamethasone treatment. Our findings provide evidence of a basigin-related and reversible immunometabolic dysregulation in COVID-19.


Subject(s)
COVID-19 , Chronobiology Disorders
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-76318.v1

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to severe pneumonia and hyperinflammation. So far, insufficient or excessive T cell responses were described in patients. We applied novel approaches to analyze T cell reactivity and showed that T anergy is already present in non-ventilated COVID-19 patients, very pronounced in ventilated patients, strongly associated with virus persistence and reversible with clinical recovery. T cell activation was measured by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood and proved to be much more meaningful than classical readouts with PBMCs. Monocytes responded stronger in males than females and IL-2 partially reversed T cell anergy. Downstream markers of T cell anergy were also found in fresh blood samples of critically ill patients with severe T cell anergy. Based on our data we were able to develop a score to predict fatal outcomes and to identify patients that may benefit from strategies to overcome T cell anergy.


Subject(s)
Pneumonia , Critical Illness , Addison Disease , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL